2014/10/03

マイクロアドを退職しました

2014年10月1日を最終出社日として、株式会社マイクロアドを退職しました。(株式会社サイバーエージェントは8月末日付で退職。)

大企業に染まりたくない一心で新卒2年目のNTTコミュニケーションズを飛び出したのが9年前。インテリジェンスから紹介されたサイバーエージェントという会社は、当時近鉄バッファローズ買収を仕掛けていたホリエモンの文脈で出てくるIT系の胡散臭い会社というくらいの認識でした。当時は今のキラキラ系とはちょっと違う、若手がグイグイやってる感じのイメージだったと思う。

そこで配属されたBlogClickプロジェクトは、ビジネスディベロップメント、システム屋、進行管理さん、そして一ヶ月前に入社した営業という事実上4名しかいない、生まれたての部署でした。ここに二人目の営業として入ったのです。入社早々、東大卒ですと自己紹介しろと強制されたり、理不尽に激ヅメされたり、モラルが無かったりと、あまりの前職との違いに戸惑ってはいたものの、このルールの無さはまさに求めていたものでした。ひどいけど、間違ってない。いや、間違ってるけど、これが求めるものでした。形骸化したルールというものが一番嫌いな人間にとって、無法地帯ではあるものの合目的的であるそこは天国であったわけです。

しかし、営業していてやはり気づくわけですね。他社媒体と比べてBlogClickはCPAが10倍くらい悪いと。そこでコンサルティングと称してデータを細かに見ていくと、今度は運用ではどうしようもない、根本の問題だと気づくわけです。むくむくとプロダクト自体を改善したいという思いが強くなって、俺が作ってやると勝手に思いはじめ、勝手に統計学やデータマイニングを勉強したら、後から職種がついてきた。気づけば、今で言う"データサイエンティスト”になっていました。

コンテンツ連動アルゴリズムの改善に始まり、行動ターゲティングのエンジンをリプレース、アドネットワークの広告選択ロジックをリプレース、そしてBLADEの企画から入札最適化エンジンとターゲティングエンジン構築へと、どんどん大掛かりなものになっていきました。BLADEの数字は毎日伸びていきました。竹の子みたいに。

立派に育った竹林をふんふんと眺めていたある日、一転新規事業をやることになりました。キノコを育てることになったようなものです。2013年の冬以降、半年以上BLADEのソースコードには一切触れていないにも関わらず、日々安定的に収益を上げ続けているのを見て、もう卒業だなと考えるようになりました。

いや、それは綺麗に言い過ぎました。本当は、サラリーマンとしての自分の戦闘能力の低さを痛いほど感じるようになったのが、このタイミングで離れる理由です。薄々気づいてはいたものの、サラリーマンとして出世競争を勝ち抜くDNAを持ってないことに33歳にしてはっきり自覚してしまったわけです。

自分の信じるものを作りたいので、まずは独立してみることにしました。データ分析の環境としては、マイクロアドは日本有数の良い環境だと思います。分析環境だけでなく、それをささえるフロント&ミドル&インフラのエンジニア、理解のある経営陣、さらには営業、バックエンドも優秀なプロフェッショナル揃いで、このチームを一からつくり上げるのは途方も無く大変だなと、真っ白な自分の計画を見て呆然としながら思います。しかし、このまま大企業で(能力として劣っている)サラリーマンとして逃げ切るよりも、独立した方が生涯の累計満足は大きいであろうと、リトル・ノグチのアルゴリズムは算出しました。

この9年間は、今までの人生の中で最も濃密で、エキサイティングなものでした。老人になった時に、この時代を誇らしげに語るのではなく、これから始まる時代を誇らしく語れるよう、頑張っていきます。



2013/12/31

あまりに短い2013年のまとめ

気づけば2013年が終わろうとしています。このブログを振り返ってみると、イベントとその資料の告知という2エントリーしかしていませんでした。とりあえず、忘れないように、2013年というものを記しておこうと思います。

仕事では海外向けとスマホ関連が多かったなぁ。坂の上の雲を追いかけていたら、いつの間にか世界大戦が勃発してしまったような感覚。数年前には考えられなかった光景が広がってて、現実世界とは思えない。そして冬からは、長年やってきた最適化エンジン&ターゲティングの開発からは離れ、新しい事を始めました。

2013年というのは、PCの終わりの始まりの年だったなぁ。言い換えると、cookieの終わりの始まりの年。パラダイムが変わるときって、本当に楽しい。

2014年、新世界を引っ掻き回すための仕込みの年にしたいと思います。

2013/04/13

色彩を持った野口わたると、彼のパワーポイント::IODC2013

野口わたるは安堵の表情を浮かべていた。IBMのサイトで公開されたPDFデータは、彼が望んだ通りのメイリオフォントが見事に再現されていたためだ。インカ帝国の石積みのように隙間なく敷き詰められた文字間隔や、美しく年輪を重ねたオーボエ奏者のように細くて丸みを帯びたメイリオフォントのラインが好きだった。また、彼は古いWindowsの初期状態のフォントがMS Pゴシックであることを、ひどく嫌っていた。たんぽぽの種が春風に吹かれて丸裸になっていくように、旧式のWindowsなんてなくなってしまえばいいとすら思っていた。もはや互換性という言葉は、彼のシナプスを通過する事はなくなっていた。

一ヶ月ほど前、彼が日本IBMから受け取ったパワーポイントのテンプレートは、とても質素なものだった。ヘッダとフッタには草原のような緑を基調とした一筋のラインが横切り、リレーショナルな円たちが背景で踊っていた。しかし、彼はその圧縮ファイルを解凍した瞬間に気づいた。「これはBLADEのカラーとは合わない。」確かにBLADEは、漆黒の夜空を黄色い雷が切り裂くような激しい色彩で、見るものを威圧するほどだったからだ。時計の最も短い針が一回転するくらい悩んだ後、彼はこれまで手がけた事のない、緑を基調とした資料を猛然と作り始めた。

しかし、ふと頭をよぎったことがテーブルにこぼした蜂蜜のように彼の脳味噌にへばりついた。「なぜIBMが緑なんだろう。」IBMに色彩は無かったのではないか。確かに以前はアメリカの少年が着ているTシャツのようなくすんだ青色を基調としていた。また、ThinkPadに誇らしげにぶら下がっていたのも赤、緑、青のロゴだった。しかし今、虹色だったアップルコンピュータの"1984"は現実のものとなり、色彩を捨てた新生"Apple"があっという間に三色のPCの帝国を打ち破ってしまった。

そんな事をぼんやり考えながら作業をしていると、背景で踊っていたリレーショナルな円たちがデータに見えてきた。そうだ、自分がなぜこんなにデータを見つめられるのかと言えば、データにはドラマがあるし、グラフが踊りながら伝えるメッセージを聴き取ろうとしているからだ。そして乳房のような曲線美を描くゲイングラフに出会いたいのだ。
「色彩。それがBIでありデータマイニングってことか。」彼はそうつぶやいた。

色彩を持たない多崎つくると、彼の巡礼の年色彩を持たない多崎つくると、彼の巡礼の年 [単行本]
著者:村上 春樹
出版:文藝春秋
(2013-04-12)



2013/04/05

IBMのイベントで講演します

Information On Demand Conference Japan 2013
4月11日(木) 14時~
【A-2】ネット広告のアルゴリズム取引で日本最大級になった理由
久しぶりに講演します。IBMのイベントで、主にデータマイニングなどの分析とビジネスについて話します。ネット広告を全然知らない方向けの内容なので、競合さんが来るとガッカリされるでしょう。

そして、このビッグデータ祭りに油を注ぐのか冷や水を浴びせるのか。「分析ツールとデータサイエンティストはシンクロ率が重要なんだ。SPSSとHadoopでは魂の場所が違うからね。」みたいな話をするとかしないとか。

Webからの申し込みはすでに満席になっていてできないようですが、FAXでの申し込みなら残席有りとのことなので、どうしても参加されたい方はFacebookのメッセージやTwitterやLinkedInなどでご連絡いただければFAXシートをお送りします。(申込は4月8日マデ)

2012/11/25

ビジネスを科学しませんか?

2012年の2本目のエントリーです。早いもので、もう2012年も終わろうとしています。日本にもアドテク情報のユビキタス化が進行し、このブログも完全に役目を終えたかに思えましたが、やらねばならないことがあります。

データサイエンティスト - 職種一覧 : 採用情報 | マイクロアド 

ヒトが足りません。モノ・カネ・情報はもういいんです。採用情報を作ってみましたが、文字数が少なすぎて想いが伝えきれないので、文字数制限の無いこちらでぶちまけます。

ビジネスを科学する仕事
まず、流行の「データサイエンティスト」というタイトルですよ。「ビッグデータ」と並ぶ2012年業界流行語大賞入選確実視されるキーワードですが、ここではビジネス素養を持ったデータマイナーのことを意味してます。ビジネス素養?うむ。それは、ぼくらのしごとはビジネスのためにデータマイニングを活用するので、データマイニング(機械学習)手法それ自体に並々ならぬ興味を持っている人と区別してます。剣術で●●流とかどうでもいいから、戦場で強い人がイイネ!ってことを指してます。往々にしてビジネスの世界は、剣術日本一よりもピストルを持ったおじいちゃんの方が強いみたいなことが起こる訳で。

また、そのテクニックの適用領域は、地球温暖化など遥かに超えるレベルで激変する環境に対して利用するわけなので、悠長な仕事をやってる暇がない。研究所と言っても基礎研究はしないし、人類の叡智のために仕事をしている場合ではない。臨床も臨床、フロント中のフロント。なぜならば、うちのデータサイエンティストは自ら作ったプログラムを自ら実験・検証して、自分で本番環境にぶっこむので。もちろん最初は誰もが素人ですけれども。

もうひとつの意味合いとしては、ぼくたちの仕事は「ビジネスを科学する仕事」なので、マーケティングを含むビジネスに楽しさを感じることは必須かも。物理現象と違って、マーケティングの世界は再現性の低いことばかり。再現性の低い環境でうまく動作するロボットをどう作るかが勝負。ここらへんは経験と勘に基づく職人技なのだけれど。

ありえない柔軟さ
おそらく、この規模のビジネスをしていて、分析官が本番環境にデータをぶっこんでいるのもうちくらいなもんなんじゃないかと思っている。良い意味でも悪い意味でも明確な承認プロセスというものが存在していない(ハハハハハ)。会社の規模としてはアドテクに従事する従業員数としては日本最大級だろうけど、まだまだベンチャーなのです。システムは完全に社内開発なので、こっちが作ったデータをパラメータ連携させるための仕様変更やログ項目を変えてもらうのも早い。たぶん、ここが外資系との一番の違い。ここらへんがボクが外資系には行けない理由。(それ以前にまともに英会話できねぇじゃねぇか)

明確に結果を出せる環境で、結果を出したもん勝ち
分析官の多くはレポートを提出して施策を提案し、そこで仕事は終わりという感じなんじゃないかと思う。で、結局その施策は諸事情によって理想通りには実行されず、目に見える成果が上がらず、お客さん・社内も信頼もしてくれない...的な無限ループ。いやボクも昔はそうでした。アウトプット対象のシステムや業務が融通がきかないと、いくら分析しても無駄なんです。なので、うちも融通のきく(分析データを配信システムにダイレクトに引き渡せる)システムに変更してもらってからはパフォーマンスで成果を見せられるようになったし、数字でダイレクトに評価が出てくるので、結果出したもん勝ちになった。分析官の能力よりも、分析結果を業務やシステムにいかに展開できるかどうかで、ほとんど最初からプロジェクトの成否は決まっているとつくづく思う。

分析環境になぜ高額な投資をするか
分析環境はデータマイニングワークベンチであるIBM SPSS Modelerで分析を組んで、裏側でDWHであるIBM Netezzaが猛烈にデータを処理している。それをジョブ管理ツールであるIBM SPSS Collaboration and Deployment Manager(CADS)でバッチを設定する。これらを利用すると、コードを一行も書かずに分析を含んだバッチプログラムを作れたりする。建築で言うなら、SPSS ModelerというCADで猛烈な早さで設計図を書き上げ、Netezzaが猛烈な早さで工事して、CADSがその進捗を管理・監視してくれるので、たった一人で巨大な都市を思考スピードで造り上げてしまうことが可能。最近ではFusion-ioを入れてみたり。(もちろん定常的な集計処理はHadoopで回してます。)もちろんこれらは非常に高額だし、オープンソースソフトウェアでも同じことできるよと言われれば、確かにスペック比較の上ではそうなのかもしれない。ただ、それらOSSの導入・学習・試行錯誤プロセス・メンテナンス・製品間連携などを考えると、商用(っていうかIBMさん)にするという選択になる。

「分析はできているんだけど、 それを自由に実験・適用する環境が無い」「いざITチームに開発を頼むと、ものすごい時間がかかるし、お互い会話する言語も違うから結局莫大な時間がかかり、何やろうとしてたか忘れた」なんてことは、あるあるネタなはず。だったら、分析官自身が商用ソフトウェアを使って、誰もが開発までできるようにしちゃえばいいじゃんって発想。OSSしか使ったことの無い人は、商用ソフトウェアがどれだけ人間の発想を支援してくれるかがわかるはず。だってボクは作る前に設計図を書いたことがないのだから!

データ量
扱っているデータはほんとに膨大。日本のネットユーザーの9割以上に一ヶ月以内にリーチしている。cookie数で4億以上、人間では6000万人以上のデータはある。いままでのCRMとは全く違うレベルのものが行える素地がある。

タイミング
RTBがデジタルな広告のプロトコルになる日は近い。英語が世界のプロトコルになったように。RTBが生まれてまだ数年。ようやくしゃべれるようになった赤ちゃんくらい。現在はPCのディスプレイ広告から動画やモバイル端末に拡張された段階だけど、もっともっと拡げられる。電子書籍端末であろうと、IPテレビだろうと、デジタルサイネージだろうと、ネットラジオだろうと。フォーマットや端末がどうあれ、その広告枠は売買され、その通信方式はRTBなはず。RTBをマーケター視点で見れば、ついに登場した真の1to1マーケティングが可能な環境。まだRTBを知らない人でも、いまならこの世界にまだ間に合う。(RTBプロトコルについては次回投稿予定)

環境
この人をはじめとして、へんてこな仲間がいっぱいです。ちなみに、東京でも京都でも拠点は好きなところに。成果さえ出せばどこで仕事してようが、誰も文句言いません。あと、文系だろうが理系だろうが論理的思考能力があれば関係ないし、データマイニング経験も関係なし。論理的思考によって「いま、自分が何をすべきか」を間違えないことが最重要であり、テクニックなんてどうにでもなるし。

そんなぼくらと一緒にはたらいてみたい方は、ご連絡を。

データサイエンティスト - 職種一覧 : 採用情報 | マイクロアド